Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 16(8): e1008107, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810158

RESUMO

Standard treatment for active tuberculosis (TB) requires drug treatment with at least four drugs over six months. Shorter-duration therapy would mean less need for strict adherence, and reduced risk of bacterial resistance. A system pharmacology model of TB infection, and drug therapy was developed and used to simulate the outcome of different drug therapy scenarios. The model incorporated human immune response, granuloma lesions, multi-drug antimicrobial chemotherapy, and bacterial resistance. A dynamic population pharmacokinetic/pharmacodynamic (PK/PD) simulation model including rifampin, isoniazid, pyrazinamide, and ethambutol was developed and parameters aligned with previous experimental data. Population therapy outcomes for simulations were found to be generally consistent with summary results from previous clinical trials, for a range of drug dose and duration scenarios. An online tool developed from this model is released as open source software. The TB simulation tool could support analysis of new therapy options, novel drug types, and combinations, incorporating factors such as patient adherence behavior.


Assuntos
Antituberculosos/uso terapêutico , Modelos Teóricos , Tuberculose Pulmonar/tratamento farmacológico , Antituberculosos/administração & dosagem , Antituberculosos/farmacocinética , Quimioterapia Combinada , Humanos , Adesão à Medicação
2.
PLoS Med ; 16(4): e1002773, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30939136

RESUMO

BACKGROUND: The sites of mycobacterial infection in the lungs of tuberculosis (TB) patients have complex structures and poor vascularization, which obstructs drug distribution to these hard-to-reach and hard-to-treat disease sites, further leading to suboptimal drug concentrations, resulting in compromised TB treatment response and resistance development. Quantifying lesion-specific drug uptake and pharmacokinetics (PKs) in TB patients is necessary to optimize treatment regimens at all infection sites, to identify patients at risk, to improve existing regimens, and to advance development of novel regimens. Using drug-level data in plasma and from 9 distinct pulmonary lesion types (vascular, avascular, and mixed) obtained from 15 hard-to-treat TB patients who failed TB treatments and therefore underwent lung resection surgery, we quantified the distribution and the penetration of 7 major TB drugs at these sites, and we provide novel tools for treatment optimization. METHODS AND FINDINGS: A total of 329 plasma- and 1,362 tissue-specific drug concentrations from 9 distinct lung lesion types were obtained according to optimal PK sampling schema from 15 patients (10 men, 5 women, aged 23 to 58) undergoing lung resection surgery (clinical study NCT00816426 performed in South Korea between 9 June 2010 and 24 June 2014). Seven major TB drugs (rifampin [RIF], isoniazid [INH], linezolid [LZD], moxifloxacin [MFX], clofazimine [CFZ], pyrazinamide [PZA], and kanamycin [KAN]) were quantified. We developed and evaluated a site-of-action mechanistic PK model using nonlinear mixed effects methodology. We quantified population- and patient-specific lesion/plasma ratios (RPLs), dynamics, and variability of drug uptake into each lesion for each drug. CFZ and MFX had higher drug exposures in lesions compared to plasma (median RPL 2.37, range across lesions 1.26-22.03); RIF, PZA, and LZD showed moderate yet suboptimal lesion penetration (median RPL 0.61, range 0.21-2.4), while INH and KAN showed poor tissue penetration (median RPL 0.4, range 0.03-0.73). Stochastic PK/pharmacodynamic (PD) simulations were carried out to evaluate current regimen combinations and dosing guidelines in distinct patient strata. Patients receiving standard doses of RIF and INH, who are of the lower range of exposure distribution, spent substantial periods (>12 h/d) below effective concentrations in hard-to-treat lesions, such as caseous lesions and cavities. Standard doses of INH (300 mg) and KAN (1,000 mg) did not reach therapeutic thresholds in most lesions for a majority of the population. Drugs and doses that did reach target exposure in most subjects include 400 mg MFX and 100 mg CFZ. Patients with cavitary lesions, irrespective of drug choice, have an increased likelihood of subtherapeutic concentrations, leading to a higher risk of resistance acquisition while on treatment. A limitation of this study was the small sample size of 15 patients, performed in a unique study population of TB patients who failed treatment and underwent lung resection surgery. These results still need further exploration and validation in larger and more diverse cohorts. CONCLUSIONS: Our results suggest that the ability to reach and maintain therapeutic concentrations is both lesion and drug specific, indicating that stratifying patients based on disease extent, lesion types, and individual drug-susceptibility profiles may eventually be useful for guiding the selection of patient-tailored drug regimens and may lead to improved TB treatment outcomes. We provide a web-based tool to further explore this model and results at http://saviclab.org/tb-lesion/.


Assuntos
Antituberculosos/administração & dosagem , Antituberculosos/farmacocinética , Pulmão/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/etiologia , Tuberculose Pulmonar/tratamento farmacológico , Adulto , Técnicas de Apoio para a Decisão , Progressão da Doença , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Farmacorresistência Bacteriana Múltipla , Quimioterapia Combinada , Feminino , Humanos , Isoniazida/administração & dosagem , Isoniazida/farmacocinética , Canamicina/administração & dosagem , Canamicina/farmacocinética , Linezolida/administração & dosagem , Linezolida/farmacocinética , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Pirazinamida/administração & dosagem , Pirazinamida/farmacocinética , Estudos Retrospectivos , Rifampina/administração & dosagem , Rifampina/farmacocinética , Distribuição Tecidual , Falha de Tratamento , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/patologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/patologia , Adulto Jovem
3.
J Innate Immun ; 5(4): 304-14, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23571274

RESUMO

Neutrophils are the most abundant circulating leukocyte and play a fundamental role in the innate immune response. Patients with neutropenia, leukocyte adhesion deficiency syndrome or chronic granulomatous disease are particularly prone to bacterial and fungal infection. However, the highly destructive capacity of these cells also increases the potential for neutrophil damage to healthy tissues, as seen in a number of inflammatory diseases such as rheumatoid arthritis and chronic obstructive pulmonary disease. The homeostatic control of circulating neutrophil levels is thus critical, as an imbalance can result in overwhelming infection or inappropriate inflammatory states. Neutrophil homeostasis is maintained by a fine balance between granulopoiesis in the bone marrow, retention in and release from the bone marrow and clearance and destruction. This review discusses the molecular mechanisms regulating neutrophil mobilization from the bone marrow, with emphasis on the antagonistic roles of the CXCR4 (C-X-C motif receptor 4)/CXCL12 (C-X-C motif ligand 12) and CXCR2/ELR+ (Glu-Leu-Arg) CXC chemokine signaling axes in the bone marrow. A role for the CXCL12/CXCR4 chemokine axis in the trafficking of senescent neutrophils back to the bone marrow for clearance, along with the role of bone marrow macrophages and the molecules that mediate neutrophil clearance by bone marrow macrophages, is also discussed.


Assuntos
Células da Medula Óssea/citologia , Doenças do Sistema Imunitário/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Animais , Circulação Sanguínea , Células da Medula Óssea/imunologia , Degranulação Celular , Diferenciação Celular , Quimiocina CXCL12/metabolismo , Homeostase , Humanos , Receptores CXCR4/metabolismo , Receptores de Interleucina-8B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA